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ABSTRACT. A signed total double Roman k-dominating function

(STDRKDF) on an isolated-free graph G = (V,E) is a function f :
V(G) — {—1,1,2,3} such that (i) every vertex v with f(v) = —1 has
at least two neighbors assigned 2 under f or at least one neighbor w with
f(w) = 3, (ii) every vertex v with f(v) = 1 has at least one neighbor
w with f(w) > 2 and (iii) > ,en(y) f(u) > &k holds for any vertex v.
The weight of an STDRKDF is the value f(V(G)) = > ,cv(q) f(u). The
signed total double Roman k-domination number ’yfth(G) is the min-
imum weight among all signed total double Roman k-dominating func-
tions on G. In this paper we present sharp lower bounds for «@th(G)

and 73, ,»(G) in terms of the order and the size of the graph G.
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1. INTRODUCTION

In this paper we only consider finite isolated free graphs without loops and
multiple edges. For notation and graph theory terminology we follow [15] in
general. Let G = (V,E) be a simple graphs without isolated vertices with
vertex set V = V(@) and edge set E = E(G). The order |V|] of G is denoted
by n = n(G). For every vertex v € V, the open neighborhood N(v) is the
set {u € V(G) | ww € E(G)} and the closed neighborhood of v is the set
N[v] = N(v) U{v}. The degree of a vertex v € V is degg(v) = |N(v)|. The
minimum degree and the mazimum degree of a graph G are denoted by § = §(G)
and A = A(G), respectively. For any set S of vertices of a graph G and any
vertex v € V(G), we denoted degs(v), for the number of neighbors of v in S.
We write P, for the path of order n, C,, for the cycle of length n and K,, for
the complete graph of order n. For two disjoint subsets S and T of V(G), we
write [S, T for the set of edges of G joining S to T. If K is a subset of Z and
f is a function from V(G) into K, then we write V; = {v € V(G) | f(v) = i}
for each i € K.

In 2016, Beeler et al. [10] defined the double Roman domination as follows.
A function f : V — {0, 1,2, 3} is a double Roman dominating function (DRDF)
on a graph G if the following conditions hold.

(i) If f(v) =0, then v must have at least one neighbor in V3 or at least two
neighbors in V5.

(i) If f(v) =1, then v must have at least one neighbor in V5 U V3.

The double Roman domination number v4r(G) equals the minimum weight
of a double Roman dominating function on G. The double Roman domination
has been studied by several authors [1, 2, 4, 5]. For further results on several
new variations of Roman domination see [6, 7, 8, 11, 14].

Amjadi et al. [9], introduced a new variation of double Roman domina-
tion as signed double Roman k-domination number. A signed double Ro-
man k-dominating function (SDRKDF) on a graph G = (V, E) is a function
f:V(G) = {-1,1,2,3} such that (i) every vertex v with f(v) = —1 is ad-
jacent to at least two vertices assigned a 2 or to at least one vertex w with
f(w) =3, (i) every vertex v with f(v) =1 is adjacent to at least one vertex w
with f(w) > 2 and (iii) f(v) = > ,cnp f(w) = k holds for any vertex v. The
weight of an SDRKDF f is the value w(f) =>_,cv (g f(u). The signed double
Roman k-domination number v%,-(G) is the minimum weight of an SDRKDF
on G. For further results on signed double Roman k-domination see [7, 16].

A signed total double Roman k-dominating function (STDRKDF) on a graph
G = (V,E) is a function f : V(G) — {—1,1,2,3} such that (i) every vertex v
with f(v) = —1 is adjacent to at least two vertices assigned a 2 or to at least
one vertex w with f(w) = 3, (ii) every vertex v with f(v) = 1 is adjacent to at
least one vertex w with f(w) > 2 and (iii) f(v) = > ,en(y) f(w) = k holds for
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any vertex v. The weight of an STDRKDF f is the value w(f) = > ey () [ (w).
The signed total double Roman k-domination number ¥, ;- (G) is the minimum
weight of an STDRKDF on G. For an STDRKDF f, let V;(f) = {v € V|
f(w) =i}. In the context of a fixed STDRKDF, we suppress the argument and
simply write V_1, V1, V5 and V5. Since this partition determines f, we can
equivalently write f = (V_1,V7,V2,V3). The concept of signed total double
Roman k-domination was introduced and investigated by Shahbazi et al. [12].
The special case k& = 1 is the usual signed total double Roman domination
which has been investigated in [13]. Shahbazi et al. [13] proved that for any
connected graph G of order n > 3 and size m, v!,5(G) > w

Following the same idea, in this paper we present sharp lower bounds for
v2,4r(G) and 2, (G) in terms of the order and the size of the graph G.

We make use of the following results in this paper.

Propsition A. [12] Forn > 2,

4 if n=23

n if n=0 (mod4)
n+2 if n=1,3(mod4)
n+3 if n=2(mod4).

73th(Pn) =

Propsition B. [12] Forn > 2,

3n : —
3 243  if n=2(mod4)
P)=1 2
Vstan(Fn) { 321 +2 otherwise.
Propsition C. [12] Forn > 3,

4 if n=3

n if n=0(mod4
Viar(Ca) = mod ¥

n+2 if n=6,n=1or3 (mod4)andn #3
n+4 if n=2(mod4).

Propsition D. [12] If n > 3, then

3n 3 =
5 _ [+ 1 if n=2 (mod 4)
Vatar(Cn) { [37”] otherwise.

Propsition E. [12] For k> 2 andn > [5]+1, ¥% o (K,) =k + 2.
We close this section with two simple results.

Lemma 1.1. If G is a connected graph of order 4 and size m, then v2,,5(G) >
92-24m
=

Proof. Let G be a connected graph of order 4. If A(G) = 2, then G € {Py, Cy}
and the result follows from Propositions A and C. Assume that A(G) =3. If G
is the complete graph K4, then the result follows from Proposition E. Suppose
G is not the complete graph K4. Let V(G) = {v1,va, vs,v4}, deg(v1) = 3 and
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[ be a v, 5(G)-function. If v; is a leaf for some i € {2,3,4}, say i = 2, then
we have
Vaar(G) = w(f)
= flv) + F(N(v))
F(N(v2)) + f(N(v1))
4

92—24m
5 .

Hence, we assume that 6(G) > 2. This implies that m > 5 and so

(AVARAVA|

’YEth(G) = w(f
1) + f(N(v1))

—
—~
<

VIV IV
—

2. LOWER BOUNDS ON ~%,,,(G) AND 73, (G)

In this section we provide sharp bounds on 'yfth(G) for k = 2,3, in terms
of the order and the size of G. To this end, we introduce some notation.

If f = (V_1,V1,V5,V3) is an STDREDF of G, then for notational conve-
nience, we assume that V., ={v € V_; | N(v)NV3 £ @} and V', =V_, —V',.
AISO, we let Vi =V U‘/Q,Vlg =W UV3,V123 = ViUVéUVE;, |V12| = N9, |V13‘ =
n13,|V123\ = N123, |V1| = TL1,|‘/2| = Na, |V3| = N3 and |V,1‘ = N_1. Then
N123 = N1 +ng +n3 and n_; =n — nia3. Let Giaz = G[Via3] be the subgraph
induced by the set Vi23 and let G123 have size my3. For ¢ = 1,2,3, if V; # 0,
let G; = G[V;] be the subgraph induced by the set V; and let G; have size m,.
Hence, mia3 = my + mgo + ms + |[V1, Va]| + |[V1, V3]| + |[Va, V3]|.

Theorem 2.1. Let G be a connected graph of order n > 4 and size m. Then

23n — 24m
Ran(@) = =

Proof. Let f = (V_1,Vi,Va,V3) be a +3,,5(G)-function such that (i) |V3] is
maximized and (ii) subject to (i), |V3 N L| is minimized where L = {v € V(G) |
deg(v) = 1}. The result is immediate for n = 4 by Lemma 1.1. Assume that
n > 5.

If V.1 = (0, then clearly yﬁth(G) >n+1> w since n > 5 and
m > n — 1. Henceforth, we assume V_; # (). We consider the following cases.
Case 1. V3 # 0.

We distinguish the following situation.

Subcase 1.1. V5 # 0.

Since each vertex in V_; is adjacent to at least one vertex in V3 or to at least
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two vertices in V5, we have
Vo1, Va]| + [[Vor, Vol | > (VI | + 2V > [V [+ [V > ne.
Furthermore we have

2n_y = 2[V/y |+ 2[V/4| < 2|[Vor, Va]|H[Vor, Val = 2 ) degy, (v)+ ) degy, (u).

veEV3 u€Va

For each vertex v € Vo U V3, we have that 3 degy, (v) +2degy, (v) +degy, (v) —
degy,  (v) = f(N(v)) > 2, and so

degy_, (v) < 3degy, (v) + 2degy, (v) + degy, (v) — 2.
Now, we have

21 <2 ) degy , (v)+ ) degy , (u)

vEV3 u€Vp
<2 ) (3degy, (v) + 2degy, (v) + degy, (v) — 2)
vEV3
+ > (3degy, (u) + 2degy, (u) + degy, (u) — 2)
u€ Vo

= (12mg + 4|[V2, V3]| + 2[[V1, V3]| — 4ns) + (3[[Vz, V3]| + 4ma2 + [[V1, V2]| — 2n2)

= 12m3 + 4ma + 7|[V2, V5]| + 2|[V1, V3]| + [V, V2]| — 4ns — 2n

= 12m123 — 12m1 — 8m2 — 5|[V§,V3]| — 10|[V1, Vé” — 11|[‘/1,V2” — 4’!13 — 27’7,27
and this implies that

1
Mmi23 > E(2n71 + 12m1 + 8mo + 5|[V2, V3” + 10|[V1, Vg]‘ + 11|[V1,V2” +4ns + ZTLQ).

Therefore,
m > maaz + |[Vo1, Vias]| + m—1
> magz + |[Vo1, Vias]|
> 15 (2noy + 12m1 -+ 8ma 4 5|[Va, Val| + 10{[Vi, Val| + 11][Vi, V]| + 4n + 2n2)
+ [V, Vi) + n-a
= 1712(141171 + 4ni2s — 4n1 — 2n2 + 12ma + 8ma + 5[[V2, Vs]| + 10[V4, V3]
+ 11|[Vi, Va| + 12|[V_1, VA]])

= 5(1417, — 10n123 — 4n1 — 2no + 12m1 + 8mso + 5|[V2, Vg]‘ =+ 10‘[‘/1, V3]|
+ 11{[Va, Vo] | + 12[[V_1, VA]]),
and so
1
ni123 2 E(—l?m + 14n — 47L1 - 2”2 + ].le + 8m2 + 5|[V2, ‘/.3”

+ 10][Vy, Va]| + 11][V1, Va| 4+ 12[[V_y, VA]|).-
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Now, we have

Viar(G) =3n3 +2ny +np —n_y
=4nz+3ns +2n1 — n

= 471123 — N —"n2 —2’/11

+10][V1, V3] + 11[[Vi, Vo] | + 12|[V_y, VA]|) = n — ng — 2my
2 23n  24m 2 9
= (55— T5) £ (29m — Sna + 12ma + 8my + 5[V, Vi)

+ 10[[Va, Va]| + 11[Va, Vo] | + 12[[V_y, VA])).

4
> TO(—IQm + 14n — 4ny — 2ns + 12mq + 8msg + 5‘[‘/2,‘/3”

Let © = —9ny — Iny + 12my + 8mg + 5|[Va, V3| + 10[[Va, V5]| + 11][V4, Va]| +
12|[V_1, V1]|. We show that © > 0. First let ny =0, then © = —%ng 4 8mg +
5[[Va, V3]|. Let V3t be the set of vertices with label 2 having a neighbor in V3,
V# be the subset of Vo — V3 with label 2 having a neighbor in V3!, V3 be the
subset of Vo — (V3 U Vi?) and ete. Since any vertex in Va have a neighbor in
V3 U Vs, by repeating this process we obtain a partition V3 UVZU...UVy of Vs,
such that each vertex in Vi has a neighbor in V;_l for each 2 <i <r—1 and
that N(x)NV2 C V7 for each z € V. We claim that each vertex v € V3 has at
least two neighbors in V3. Suppose, to the contrary, that there exists a vertex
v € VJ having exactly one neighbor w in V3. Then deg,(v) = 1 and since G
is connected and f is an STDR2DF of G we deduce that u has a neighbor in
Vg — {v}. But then the function g defined on G by g(v) = 1,g9(u) = 3 and
g(z) = f(x) otherwise, is a 72, ;(G)-function which contradicts the choice of
f. Hence each vertex v € V3 has at least two neighbors in V5. Then

9
© =~z + 8ma + 5|[V2, Vi

r—1
9 .
> —ona + 5|V Vall + 803 [IV2, V3 ']|) + 8IB(G[V )]
=2

9 r—1 )
> —5na+5[V |+ 80 IV3) +8|vy|
=2
9
> 0.

Therefore 72, (G) > 222224™  Suppose now that n; > 1. Let V{! be the set
of vertices with label 1 having a neighbor in V3 and V3 be the set of vertices
with label 2 having a neighbor in V3 U Vi, Suppose V2 is the subset of V; — V!
having a neighbor in V;! UV4 and V7 is the subset of V5 — V3! having a neighbor
in V2UV4. Since V; and V; are finite sets, by repeating this process we obtain
disjoint subsets V;* UV2U... UV of V; (possibly some of V} are empty) such
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that each vertex in Vf has a neighbor in Vf_l U V;_l for each 2 < i < r, and
disjoint subsets Vit UVZ U ... U Vy of V, (possibly some of Vi are empty) so
that every vertex in V3 has a neighbor in Vj UV; ! for each 2 < i < r and that
Vi =Vy=0. Let V' = Vi — (UI_, V) and V; 1 = Vo — (UI_, V7). Clearly,
VIUVZU.. .UV is a weak partition of Vi and V3 UVZU...UVy T is a weak
partition of V5. Note that N (z) C Vi T uVy T UV_, for each = € VMUV, 1,
Assume that Hi,...,H; be the components of G[V/ ™' UV, '], Since G is
connected and f is a STDR2DF of G, we must have |V(H;)| > 3 for each
1<i<t if V/TPUVyt £ 0. Then

9
© = ~On1 — Sy + 12my + 8ma + 5|[Va, Val| + 10[Va, Val| + 11|[Vi, Va)| + 12(Vos, Val)

> (=9I |+ 10][Vi', Vall) + S (=9IV + 121V, Vi ]+ 1V V) +
1=2

9
O+ 5l vl + nuvf,v;]\)

t

= (e v, v ) + 3 (=G + i)

=1

M/‘\

+

Y%
V)

- (,9 (H;) + 8(n(H;) — 1))

1

1 (gn(H,-) - s)

Therefore v2,,5(G) > 23n2im,

k3

R

>

K3

Y
=]

Subcase 1.2. V, = 0.
By definition of STDR2DF, each vertex in V_; is adjacent to one vertex in V3,
and so

> degy , (v) = |[Voy, Va]| > Vg = ny.

vEV3

As in Subcase 1.1, for each v € V3 we have 3 degy, (v) +degy, (v) —degy_, (v) =
F(N(v)) > 2, and so degy,_, (v) < 3degy, (v) + degy, (v) — 2. Now, we have

na< Y degy, ()

veEV3

< > (3degy, (v) + degy, (v) — 2)
veEV3

= 6ms + |[V1, V3]| — 2n3
= 6mag — 6my — 5|[V1, V3]| — 2ns,
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which implies that m;3 > %(n_l + 6mq + 5|[V1, V3]| 4+ 2n3). Hence,
m =maz + |[V_1, V3]| + |[V-1, Vi]| + m—1
> mas + [V, V3] + |[Vo1, Vi

Y

[N e e e e N I

(n—1 4 6my + 5|[V1, Vo[ + 2n3) +n_1 +|[V_1, Vi]|

(Tn_y + 2n3 + 6my + 5[[V1, V3]| + 6[[V_1, V1]])

(7n_1 + 2n13 — 2nq + 6mq + 5|[V1, V3]| + 6|[V_1, V1]|)

= —(Tn — bniz — 2nq + 6my + 5|[V1, V5] + 6|[V_1, V1]]),
and so

nig > %(—6m + Tn — 2ny + 6mq + 5|[Vi, V3] + 6|[V_1, Vi]]).
Now, we have
Yarar(G) = 3ns + 1 —n_y

=4nz+2n1 —n

:4TL13 —n—2n1

4
> 5(—6m+ Tn — 2ny + 6my + 5|[Va, Va]| 4+ 6|[V_1, Vi]|) = n — 2ny
4 5 5
= g (=6m +7n —2n = 2ny — gy + 6ma + 5[Va, Val| + 6V, Vi)
4,23 4 9

Let © = —Zny +6my +5|[V4, V3]|+6|[V_1, V1]|. We show that © > 0. If ny =0,
then ©® = 0. Suppose that n; > 1. Since each vertex of V7 is adjacent to a
vertex of V3, we have |[V1, V3]| > ny. It follows that

9
@ = —5711 + 6m1 + 5|[V1,V3]| + 6|[V,1,V1]|

9
Z _inl =+ 6m1 + 5”1 + 6‘[V717 Vl”

> 0.

23n—24m

Therefore 2, (G) > 222=

Case 2. V3 = (.
Since V_1 # 0, we conclude that Vo # (. By definition of STDR2DF, each
vertex in V_; is adjacent to at least two vertices in V5, and so

> degy, (v) =|[Voy, V]| > 2Voy| = 20y,

veVs

As in Subcase 1.1, for each v € V2 we have that 2degy,(v) + degy, (v) —
degy  (v) = f(N(v)) > 2, and so degy,  (v) < 2degy,(v) + degy, (v) — 2.
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Now, we have

2n_1 < Z degy, | (v)
veEVS

< Z (2degy, (v) + degy, (v) — 2)
veVs

=4mo + HVl,VQ” — 2no
= 4dmyo — 4my — 3|[V1, Va]| — 2na,

which implies that
1
mig > Z(an +4my + 3|[V1, Val| + 2n2).
Hence,

m =mig + |[V_1, Vi]| + m_1
> mig + |[V_1, Via]|

1
> 1(271_1 +4mq + 3|[V1,V2]| + 277,2) +2n_1 + |[V1,V_1]|

1
i(lOn_l 4+ 2n19 — 2nq + 4mq + 3|[V1,‘/2H + 4|[V1,V_1]|)

1
4

(10n — 8n1a — 2nq + 4mq + 3|[Va, Va]| + 4][V1, V_4]))

and so nyg > £(—4m + 10n — 2ny + 4my + 3|[V4, Va]| + 4|[V4, V_1]|). Now, we
have
Yorar(G) = 2n2 +ny —n_y
=3ns+2n1 —n

=3n12—n—n1

v

(—4m + 10n — 2nq + 4mq + 3|[V1, Va]| + 4|[V1, V_a]) = n—m

8 3, 14
+4|[Vi, Vo))
22 5 5 3, 14
L) = 2ma 2 2(—En, 1 4
371) 3 +8m+8( 3Tl1+ my + 3|[Vi, V2|

+
=

V_all)

3, 14 5
—17m +22n) + (=5 + dmy + om + 3|[V3, Vo]
Vi, Vo).

IV
o= ™ ol P ol w ool w
—~
|
g
+

—~

+
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Let © = —3dny +4my + Zm+ 3|[V4, Va]| + 4|[V4, V_4]|. If ny = 0, then © > 0.
Suppose that n; > 1. Since any vertex in V; is adjacent to a vertex in Vs, we
have

14 )
© =~ -+ dmy + g+ 3[R, Val |+ 4|[Vi, Vo

14 17 14
> = — — .
> -zt i+ 3|[V1,V2]|

>0

Therefore 72,,(G) > £(22n — 17m) > 1(23n — 24m). This completes the
proof. (I

In the next example, we present an infinite family of graphs that attain the
bound of Theorem 2.1.

EXAMPLE 2.2. For any connected graph F' of order ¢ > 2, let F; be the graph
obtained from F' by adding 3 degp(v) — 2 pendant edges to each vertex v of F.
Then
n(F) =n(F)+ 3 (3degp(v) —2) = 6m(F) - n(F)
veEV(F)
and
m(F) =m(F)+ Y (3degp(v) —2) = Tm(F) — 2n(F).
veV (F)
Assigning a 3 to every vertex in V(F') and a -1 to every vertex in V(F;) —V(F)
produces an STDR2DF of weight

3n(F)— > (3degp(v) —2) = 5n(F) — 6m(F)

veV (F)

= 5 ,

23n(Fy)—24m(Fy
5

and s0 72,z (Fr) < ). Applying Theorem 2.1, we have V2ar(Ft) =

23n(Fy)—24m(Fy)

5

Next we present a sharp lower bound on 73,5 (G).

Theorem 2.3. Let G be a connected graph of order n > 5 and size m. Then
’Y?th(G) > 6n — 6m.
Furthermore, this bound is sharp.

Proof. Let f = (V_1,Vi,Va,V3) be a v ,5(G)-function such that (i) |V3] is
maximized and (ii) subject to (i), |V3 N L| is minimized where L = {v € V(G) |
deg(v) = 1}. If Voy = 0, then +3,,z(G) > n+1 > 6n — 6m. Suppose that
V_1 # (). Consider the following cases.

Case 1. V3 # 0.
First let V5 # (). As in the proof of Theorem 2.1, we have

1 1
> degy () +5 D degy_, (w) = [[Vor, VAl + G l[Vor, Val| = V] + [V = o,
veVs u€Vy
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and for each vertex v € VoUV3, degy, | (v) < 3degy, (v)+2 degy, (v)+degy, (v)—
3. Now, we have

3
3n_1 <3 Z degy,_, (v) + 3 Z degy_, (u)

vEV3 ueVp
<3 (3degy, (v) + 2degy, (v) + degy, (v) — 3)
veEV3
3
+ 5 Z (3 degV3 (u) + 2degV2 (u) + degvl (u) —3)
u€ Vo

9 3 9
= (18ms +6][Vz, Vs]| + 3[[V1, Vs]| = 9na) + (51 [V2, V3] + 6ma + S |[Va, V2] — 5na)

21 3 9
= 18mg + 6ma + —-[[Va, Va][ + 3][Va, Va]| + 5 [V1, Vo] | = 9ns — Sz
33 9
| - ?HVlaV?” —9ng — Sna,

15
= 18m123 - 18m1 - 12m2 - ?HVQ, Vg]‘ - 15‘[‘/1, ‘/3] 2

and so

1 15 33 9
mig3 2> E(3n_1+18m1+12m2+?|[V2, V3]|+15|[V1,V3]|+7|[V1, ‘/2}|+9n3—|—§n2).

Using an argument similar to that described in the proof of Theorem 2.1, we

obtain

1 15
nigg > 5(7187’” +21n —9n1 — gng + 18m1 + 12mo + EHVQ, ‘/3” =+ 15|[V1,V3”

33
+ 5 [Va, V[ + 18][Voy, VA])).
Now, we have
’Ysng(G) =3n3 +2n2 +n1 —n_1
=4dns +3n2 +2n1 —n

= 4TL123 — N —nNg — 27’L1

4 1
> ﬁ(—18m—|—21n —9n;1 — gng + 18my + 12m2 + ;\[VQ,%H

33
+15][Va, Va]l + - [V, Val | + 18| [Vo1, Vi) =m0 — 2 — 2m

1 1 1
= g(—18m + 18n — 15n; — ;ng + 18m1 + 12mo + ;l[VQ, Vs]|

33
+15][Va, Va]| + - [[Va, Vo] | + 18] [V, WA][)

1 1 1
6n — 6m + g(—lfml — 75712 + 18m1 + 12m2 + ?5|[V2,V3]|
33
+15|[Va, Vsl + - [[Va, Val| + 18] [Vo, VA])).

Let © = —15n1 — P no +18m1 +12mog + P |[Vo, Va]|+15|[Vi, Va]| + T |[V1, Va] |+
18|[V_1,Vi]|. We show that © > 0. If ny = 0, then © = —12n; 4+ 12m, +
12|[V3, V5]| and as in the proof of Theorem 2.1 we can see that © > 0 implying
that 7%, (G) > 6n — 6m. Suppose now that ny > 1.

Now we use the notations defined in the proof of Theorem 2.1 (Subcase 1.1).

Since G is connected and f is a STDR3DF of G, we must have |V (H;)| > 3
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and 0(H;) > 2 for each 1 < i < ¢. It follows that |E(H;)| > |V (H;)| for each
1 <7 <t. Thus

15 15
O = —15n1 — ?TLQ + 18m1 + 12mo + ?‘[‘/'2, ‘/3” —+ 15“‘/17 Vg]‘

33
+ ?|[V17V2]\ + 18|[V-1, V1]

- 1 i i— 33 i i—
> (—15|V11\+15([V11,V3]|))+Z(715|V1|+18|[V1,V1 1]\+3\[V1,V2 1]|)
1=2
15 15 33
+ (=g m F vl + S )

S (-5 33 T
i i yri—1 i vri

- ; (—;l% |+ 12|[Va, Vo] + 7I[V1,V2]\> + ; (——n(Hi) n 12m(Hi)>
t

15
2 <_?7’L(Hi) + 12n(HZ~))
i=1
> 0.

Therefore 73, ,5(G) > 6n — 6m.

Now let V5 = (). As above, we have 3, i, degy  (v) = [[V_1,V3]| > n_y
and degy , (v) < 3degy, (v) + degy, (v) — 3 for each vertex v € V3. Now, we
have

n_y < Z degy  (v)

veEV3

< > (3degy, (v) + degy, (v) — 3)
veEV3

= 6m3 + [[V1, V3] — 3n3
= 6m3 — 6my — 5|[V1, V3]| — 3ns,

which implies that my3 > &(n_1 + 6my + 5|[V1, V3]| + 3n3). Hence,

m =magz + |[V_1, V3]| + [[V_1, Vi]| + m 1

maz + |[Vor, Va]| + [[V-1, V1|

V

Y

1
g(nfl +6my + 5|[Vi, V3] + 3nz) +n_1 + |[V_y, Vi]|

1
6(771_1 + 3ng + 6my + 5|[V1,V3]| + 6|V—1,V1|)

1
6(7’&_1 + 3TL13 — 3711 + 6m1 + 5‘[‘/1,‘/3” + 6|V_1, V1|)
1
= 6(771 —4nq3 — 3ng + 6my + 5|[V1,V3]| + 6|V_1,‘/1|)
and this implies that

1
nig > 1(76772 + ™ — 3ny + 6my + 5|[V1,V3]| + 6|[V_1, V1H)


http://ijmsi.ir/article-1-2018-en.html

[ Downloaded from ijmsi.ir on 2025-09-20 ]

Lower Bounds on Signed Total Double Roman k-domination in Graphs 75
Now, we have
3
Ystar(G) = 3nz +n1 —n_y

=4ng+2n1 —n

= 477,13 —n— 2711

4
> 1(—6m—|— ™n — 3ny + 6mq + 5|[V1, V]| + 6|[V_1, V4]|) = n — 2ny
= (—6m + 6n) + (—5n1 + 6m1 + 5|[V1, Vg]‘ + 6|[V,1, Vll])
> (—6m + 6n).
Case 2. V3 = 0.

Since f is a STDR3DF of G, we conclude that §(G) > 2 and so m > n. Now
V_1 # 0 implies that V5 # (). By definition of STDR3DF, each vertex in V_
is adjacent to at least two vertices in V3, and so

Vo1, Vig]| > |[Vo1, Va]| > 2|V_q| = 2n_y.
As above, we have 2n_; < 4mjy5 — 4my — 3|[V1, V2]| — 3ny and hence
mig > i(?n_l + 4myq + 3|[V1, V]| + 3na).
Now we have

m =miz + |[V_1, Via]| + m_y
mig + [[V_1, Via]|

Y

v

1
1(271_1 +4mq + 3|[V1,V2]| + 371,2) +2n_1 + |[V1,V_1]|

Y

1
1(1071—1 + 3ni2 + 4my + 3|[V1, V2] | — 3ny + 4|[Vi, V4]))

1
7 (100 = Tnaz 4 dma + 3|[Vi, Va]| = 3na + 4V, Vool

and so

1
Nnio Z ?(747)’1 + 10TL +4m1 + 3‘[‘/17‘/2” - 3”1 + 4|[V17V—1]|)
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Thus

Vorar(G) =2ns +n1 —n_y
=3ns+2n1 —n

=3n12—n—n1

3
> ?(—4m + 10n + 4my + 3|[V1, Va]| — 3ny +4|[V1, V_1]]) —n — nq

3 23 16
= §(—4m tgn-gmt dmy + 3[[V1, Va]| + 4([V1, V_1]])
3 23 3 16

—12m+23n 3, 16
= T 4 2 (=g + 4Amy + 3|V, Va)| + 4|[Va, Vi)

7 7V 3
S —12m + 23n
- 7
> —6m + 6n.

To prove the sharpness, let H; (t > 2) be the graph obtained from a connected
graph H of order ¢ by adding 3 degy (v) — 3 pendant edges to each vertex v of
H. Then

n(Hy) =n(H)+ Y (3degy(v) —3) = 6m(H) — 2n(H)
veV(H)

and

m(H:) =m(H) + Z (3degp (v) —3) = Tm(H) — 3n(H).
veV (H)

Assigning a 3 to every vertex in V(H) and a -1 to every vertex in V(H;) -V (H)
produces an STDR3DF f of weight

w(f) =3n(H)— Y (3degy(v)—3) = 6n(H)—6m(H) = 6n(H,;) — 6m(H,),

veV (H)
and hence 72, (Hy) < 6n(H;) — 6m(H;). Thus v2,,5(H:) = 6n(H;) — 6m(H,;)
and the proof is complete. O
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